Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Lei Cao‡ and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, Hangzhou, People's Republic of China

Alternative address: Institute of the Geological Survey of Jiangsu Province, Nanjing, People's Republic of China.

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C-C}) = 0.005 \text{ Å}$ R factor = 0.041 wR factor = 0.114 Data-to-parameter ratio = 13.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris(1*H*-benzimidazole- κN^3)(oxydiacetato- $\kappa^3 O, O', O''$)cobalt(II)

In the title complex, $[Co(C_4H_4O_5)(C_7H_6N_2)_3]$, one tridentate oxydiacetate dianion and three benzimidazole molecules coordinate to the Co^{II} cation, resulting in a distorted octahedral geometry. The oxydiacetate ligand chelates to the Co^{II} cation with a facial configuration and the Co–O(ether) bond distance is longer than the average Co–O(carboxyl) bond distance by 0.185 (3) Å. A network of N–H···O hydrogen bonds helps to establish the crystal packing. Received 20 September 2005 Accepted 21 September 2005 Online 28 September 2005

Comment

Several reported crystal structures of metal complexes incorporating the benzimidazole ($C_7H_6N_2$; BZIM) ligand have shown the existence of π - π stacking between neighbouring aromatic rings in these structures (Chen *et al.*, 2003; Liu & Xu, 2004; Bukowska-Strzyżewska & Tosik, 1983). As part of our ongoing investigations of the nature of π - π stacking (Li *et al.*, 2005), the title BZIM/ODA (ODA is the oxydiacetate dianion, $C_4H_4O_5^{2-}$) complex of Co^{II}, (I), has been prepared in our laboratory, and its structure is presented here.

The molecular structure of (I) is illustrated in Fig. 1. The combination of three BZIM ligands and a tridentate chelating ODA ligand results in a distorted octahedral coordination for the Co^{II} cation (Table 1). The facial configuration of the ODA anion in (I) differs from the meridional configuration found in most Co complexes with a chelating ODA ligand (CSD, Version 5.26; Allen, 2002), but agrees with that found in diaqua(nitrobenzimidazole)(ODA)cobalt(II) (Zhang *et al.*, 2005). It is notable that the Co-O(ether) bond is significantly longer than the Co-O(carboxyl) bonds in (I).

As shown in the packing diagram (Fig. 2), the uncoordinated ODA carboxyl atoms, O2 and O5, form links with the BZIM ligands of neighbouring complexes by accepting N-

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

Figure 1

The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

 $H \cdots O$ hydrogen bonds (Table 2), which results in a long centroid-to-centroid separation (> 5 Å) for the latter species. Thus, no π - π stacking occurs between parallel BZIM ligands in the crystal structure of (I).

Experimental

An aqueous solution (15 ml) of CoCl₂·6H₂O (1 mmol), H₂ODA (1 mmol) and Na₂CO₃ (1 mmol) was mixed with an ethanol solution (5 ml) of BZIM (2 mmol). The solution was refluxed for 5 h and then filtered. Red single crystals of (I) were obtained after 2 d.

Crystal data

$[Co(C_4H_4O_5)(C_7H_6N_2)_3]$	$D_x = 1.486 \text{ Mg m}^{-3}$
$M_r = 545.42$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 11165
a = 12.2152 (4) Å	reflections
b = 10.3120 (2) Å	$\theta = 2.3 - 26.5^{\circ}$
c = 19.3617 (4) Å	$\mu = 0.75 \text{ mm}^{-1}$
$\beta = 91.257 (1)^{\circ}$	T = 295 (2) K
V = 2438.27 (11) Å ³	Rod, red
Z = 4	$0.26 \times 0.09 \times 0.06 \; \text{mm}$
Data collection	
Rigaku R-AXIS RAPID	4587 independent reflections
diffractometer	3430 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.048$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.6^{\circ}$
(ABSCOR; Higashi, 1995)	$h = -14 \rightarrow 14$
$T_{\min} = 0.918, T_{\max} = 0.955$	$k = -12 \rightarrow 12$
19382 measured reflections	$l = -23 \rightarrow 23$
Refinement	
Refinement on F^2	H-atom parameters constraine

 $R[F^2 > 2\sigma(F^2)] = 0.041$ wR(F²) = 0.114 S = 1.094587 reflections 334 parameters

$R_{\rm int} = 0.048$
$\theta_{\rm max} = 25.6^{\circ}$
$h = -14 \rightarrow 14$
$k = -12 \rightarrow 12$
$l = -23 \rightarrow 23$
II atom nonomatom constrained
n-atom parameters constrained
$w = 1/[\sigma^2(F_0^2) + (0.066P)^2]$
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma) = 0.001$

 $\Delta \rho_{\rm max} = 0.62 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-2}$

Figure 2

A packing diagram for (I). Dashed lines indicate intermolecular hydrogen bonds. [Symmetry codes: (i) 1 - x, $-\frac{1}{2} + y$, $\frac{1}{2} - z$; (iii) x, $\frac{3}{2} - y$, $\frac{1}{2} + z.$]

Table 1

Selected geometric parameters (Å, °).

Co-O1	2.039 (2)	Co-N13	2.085 (2)
Co-O3	2.269 (2)	Co-N23	2.178 (2)
Co-O4	2.1294 (19)	Co-N33	2.134 (2)
O1-Co-O3	77.60 (8)	O3-Co-N33	88.88 (8)
O1-Co-O4	87.68 (8)	O4-Co-N13	94.91 (8)
O1-Co-N13	94.47 (9)	O4-Co-N23	172.95 (8)
O1-Co-N23	93.63 (9)	O4-Co-N33	83.58 (8)
O1-Co-N33	165.29 (9)	N13-Co-N23	91.89 (9)
O3-Co-O4	76.89 (7)	N13-Co-N33	98.03 (9)
O3-Co-N13	168.69 (8)	N33-Co-N23	93.65 (9)
O3-Co-N23	96.61 (8)		

Table 2	-	
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N11-H11···O4 ⁱ	0.86	2.23	3.039 (3)	157
$N11-H11\cdots O5^{i}$	0.86	2.39	3.018 (3)	131
$N21 - H21 \cdots O5^{ii}$	0.86	1.96	2.762 (3)	154
$N31 - H31 \cdots O2^{iii}$	0.86	1.90	2.756 (3)	178

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, y - 1, z; (iii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

H atoms were placed in calculated positions, with C-H = 0.97 Å (methylene), C-H = 0.93 Å (aromatic) and N-H = 0.86 Å. They were included in the final cycles of refinement in riding mode, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm carrier}).$

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (grant No. 20443003).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bukowska-Strzyżewska, M. & Tosik, A. (1983). Acta Cryst. C39, 203-205.
- Chen, Z., Xu, D.-J., Li, Z.-Y., Wu, J.-Y. & Chiang, M. Y. (2003). J. Coord. Chem. 56, 253–259.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.
- Liu, Y. & Xu, D.-J. (2004). Acta Cryst. E60, m1002-m1004.
- Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 900 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Zhang, B.-Y., Liu, J.-G. & Xu, D.-J. (2005). Acta Cryst. E61, m1128-m1130.