Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lei Cao \ddagger and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, Hangzhou, People's Republic of China
£ Alternative address: Institute of the Geological Survey of Jiangsu Province, Nanjing, People's Republic of China.

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.041$
$w R$ factor $=0.114$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Tris($1 H$-benzimidazole- κN^{3})(oxydiacetato$\left.\kappa^{3} O, O^{\prime}, O^{\prime \prime}\right)$ cobalt(II)

In the title complex, $\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{3}\right]$, one tridentate oxydiacetate dianion and three benzimidazole molecules coordinate to the $\mathrm{Co}^{\mathrm{II}}$ cation, resulting in a distorted octahedral geometry. The oxydiacetate ligand chelates to the $\mathrm{Co}^{\mathrm{II}}$ cation with a facial configuration and the $\mathrm{Co}-\mathrm{O}$ (ether) bond distance is longer than the average $\mathrm{Co}-\mathrm{O}$ (carboxyl) bond distance by 0.185 (3) \AA. A network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds helps to establish the crystal packing.

Comment

Several reported crystal structures of metal complexes incorporating the benzimidazole $\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right.$; BZIM) ligand have shown the existence of $\pi-\pi$ stacking between neighbouring aromatic rings in these structures (Chen et al., 2003; Liu \& Xu, 2004; Bukowska-Strzyżewska \& Tosik, 1983). As part of our ongoing investigations of the nature of $\pi-\pi$ stacking (Li et al., 2005), the title BZIM/ODA (ODA is the oxydiacetate dianion, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}^{2-}$) complex of $\mathrm{Co}^{\text {II }}$, (I), has been prepared in our laboratory, and its structure is presented here.

(I)

The molecular structure of (I) is illustrated in Fig. 1. The combination of three BZIM ligands and a tridentate chelating ODA ligand results in a distorted octahedral coordination for the $\mathrm{Co}^{\text {II }}$ cation (Table 1). The facial configuration of the ODA anion in (I) differs from the meridional configuration found in most Co complexes with a chelating ODA ligand (CSD, Version 5.26; Allen, 2002), but agrees with that found in diaqua(nitrobenzimidazole)(ODA)cobalt(II) (Zhang et al., 2005). It is notable that the $\mathrm{Co}-\mathrm{O}$ (ether) bond is significantly longer than the $\mathrm{Co}-\mathrm{O}$ (carboxyl) bonds in (I).

As shown in the packing diagram (Fig. 2), the uncoordinated ODA carboxyl atoms, O2 and O5, form links with the BZIM ligands of neighbouring complexes by accepting $\mathrm{N}-$

Received 20 September 2005
Accepted 21 September 2005
Online 28 September 2005

Figure 1
The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), which results in a long centroid-to-centroid separation (>5 \AA) for the latter species. Thus, no $\pi-\pi$ stacking occurs between parallel BZIM ligands in the crystal structure of (I).

Experimental

An aqueous solution (15 ml) of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{ODA}$ $(1 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{mmol})$ was mixed with an ethanol solution $(5 \mathrm{ml})$ of BZIM $(2 \mathrm{mmol})$. The solution was refluxed for 5 h and then filtered. Red single crystals of (I) were obtained after 2 d .

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{3}\right]$
$M_{r}=545.42$
Monoclinic, $P 2_{1} / \mathrm{c}$
$a=12.2152$ (4) \AA
$b=10.3120(2) \AA$
$c=19.3617$ (4) \AA
$\beta=91.257$ (1) ${ }^{\circ}$
$V=2438.27$ (11) \AA^{3}
$Z=4$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.918, T_{\text {max }}=0.955$
19382 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.114$
$S=1.09$
4587 reflections
334 parameters
$D_{x}=1.486 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 11165 reflections
$\theta=2.3-26.5^{\circ}$
$\mu=0.75 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Rod, red
$0.26 \times 0.09 \times 0.06 \mathrm{~mm}$

4587 independent reflections
3430 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=25.6^{\circ}$
$h=-14 \rightarrow 14$
$k=-12 \rightarrow 12$
$l=-23 \rightarrow 23$

H -atom parameters constrained

$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.066 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\text {max }}=0.62 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.56 \mathrm{e}^{-3}$

Figure 2
A packing diagram for (I). Dashed lines indicate intermolecular hydrogen bonds. [Symmetry codes: (i) $1-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (iii) $x, \frac{3}{2}-y$, $\frac{1}{2}+z$.]

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{Co}-\mathrm{O} 1$	$2.039(2)$	$\mathrm{Co}-\mathrm{N} 13$	$2.085(2)$
$\mathrm{Co}-\mathrm{O} 3$	$2.269(2)$	$\mathrm{Co}-\mathrm{N} 23$	$2.178(2)$
$\mathrm{Co}-\mathrm{O} 4$	$2.1294(19)$	$\mathrm{Co}-\mathrm{N} 33$	$2.134(2)$
$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 3$	$77.60(8)$	$\mathrm{O} 3-\mathrm{Co}-\mathrm{N} 33$	$88.88(8)$
$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 4$	$87.68(8)$	$\mathrm{O} 4-\mathrm{Co}-\mathrm{N} 13$	$94.91(8)$
$\mathrm{O} 1-\mathrm{Co}-\mathrm{N} 13$	$94.47(9)$	$\mathrm{O} 4-\mathrm{Co}-\mathrm{N} 23$	$172.95(8)$
$\mathrm{O} 1-\mathrm{Co}-\mathrm{N} 23$	$93.63(9)$	$\mathrm{O} 4-\mathrm{Co}-\mathrm{N} 33$	$83.58(8)$
$\mathrm{O} 1-\mathrm{Co}-\mathrm{N} 33$	$165.29(9)$	$\mathrm{N} 13-\mathrm{Co}-\mathrm{N} 23$	$91.89(9)$
$\mathrm{O} 3-\mathrm{Co}-\mathrm{O} 4$	$76.89(7)$	$\mathrm{N} 13-\mathrm{Co}-\mathrm{N} 33$	$98.03(9)$
$\mathrm{O} 3-\mathrm{Co}-\mathrm{N} 13$	$168.69(8)$	$\mathrm{N} 33-\mathrm{Co}-\mathrm{N} 23$	$93.65(9)$
$\mathrm{O} 3-\mathrm{Co}-\mathrm{N} 23$	$96.61(8)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 11-\mathrm{H} 11 \cdots \mathrm{O}^{\text {i }}$	0.86	2.23	$3.039(3)$	157
$\mathrm{~N} 11-\mathrm{H} 11 \cdots 5^{\mathrm{i}}$	0.86	2.39	$3.018(3)$	131
$\mathrm{~N} 21-\mathrm{H} 21 \cdots \mathrm{O}^{\mathrm{ii}}$	0.86	1.96	$2.762(3)$	154
$\mathrm{~N} 31-\mathrm{H} 31 \cdots \mathrm{O}^{\mathrm{iii}}$	0.86	1.90	$2.756(3)$	178

Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $x, y-1, z$; (iii) $x,-y+\frac{3}{2}, z+\frac{1}{2}$.
H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ (methylene), $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic) and $\mathrm{N}-\mathrm{H}=0.86 \AA$. They were included in the final cycles of refinement in riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier $)$.

metal-organic papers

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (grant No. 20443003).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bukowska-Strzyżewska, M. \& Tosik, A. (1983). Acta Cryst. C39, 203-205.
Chen, Z., Xu, D.-J., Li, Z.-Y., Wu, J.-Y. \& Chiang, M. Y. (2003). J. Coord. Chem. 56, 253-259.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Li, H., Yin, K.-L. \& Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.
Liu, Y. \& Xu, D.-J. (2004). Acta Cryst. E60, m1002-m1004.
Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 900 New Trails Drive, The Woodlands, TX 77381-5209, USA
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Zhang, B.-Y., Liu, J.-G. \& Xu, D.-J. (2005). Acta Cryst. E61, m1128-m1130.

